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1 Introduction

State-of-the-art part-of-speech (POS) tagging mod-
els are highly accurate (FLAIR from Akbik et al.,
2019 is 97.85% accurate), but cognitively implau-
sible because they rely on large annotated cor-
pora and/or are structured as complex statistical
optimization problems (Haghighi & Klein, 2006;
Christodoulopoulos et al., 2010). Meanwhile, POS
tagging is a problem children are extremely skilled
at solving when in the process of learning a lan-
guage (Tomasello, 2000). The average American
child hears only about 5 million words per year
(Hart & Risley, 1995), none of which are labeled
with their syntactic category like they are in super-
vised models such as FLAIR. Children also receive
no negative feedback (Brown & Hanlon, 1970),
and surely have lesser computational capacities
than that of modern computing systems.

In this paper, we develop a model that can
be used for both child language acquisition and
minimally-supervised POS tagging. The key prin-
ciples it is based upon are semantic bootstrapping,
distributional frames, reinforcement learning, and
the Tolerance Principle–a threshold for the produc-
tivity of linguistic rules (Yang, 2016). While our
goal is not to outperform existing POS taggers,
we present accuracy, precision, recall, and F-score
metrics to demonstrate the our model’s validity.

This paper is organized as follows. Section 2
contains background on the principles our model is
based upon. Section 3 details our prototype-driven
model. Evaluation methods are explained in sec-
tion 4, followed by results in section 5. Section 6
discusses conclusions and areas of potential future
research.
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John Hewitt for his insights and advice, and my LING 300
classmates for their invaluable feedback.

2 Background

While it is still unknown exactly how children learn
syntactic categories, we focus on four key theories
of child language acquisition when developing our
model.

2.1 Semantic Bootstrapping

The semantic bootstrapping hypothesis (Pinker,
1984) suggests that children innately map salient
semantic categories to syntactic ones. For exam-
ple, children learn that tangible objects are nouns,
actions are verbs, visible properties are adjectives,
etc. An analysis by Rondal et al. (1987) supports
this hypothesis by showing, in an English corpus of
child-directed speech, all things are nouns and all
actions are verbs. Further, we know children’s early
vocabulary tends to contain mostly tangible, con-
crete, salient words (Pinker, 1984; Gleitman et al.,
2005, Carlson et al., 2014). Presumably learning
these salient words enables children to use other
tools such as distributional information to expand
their vocabulary further.

2.2 Distributional Frames

There is wide support that distributional cues play
a role in learning the syntactic categories of novel
words (Brown, 1957, Mintz, 2003, Chemla et al.,
2009, Reeder et al., 2013, Schuler et al., 2017).
For example, upon hearing the phrase “This is a
sib”, four-year-olds will assume “sib” is a noun,
but upon hearing the phrase “I sib the dog” they
will assume “sib” is a verb (Brown, 1957). Adults
have also been shown to make these assumptions
when learning artificial languages (Schuler et al.,
2017). Distributional frames, defined by Mintz
(2003) to be the words immediately preceding and
immediately following the target word, are at play
here. For example, in “I sib the dog”, the lexical
frame surrounding “sib” is “I the” and the POS



frame is “PRO D”1. A language learner can use
these context words to infer the POS tag of the
target word.

2.3 Reinforcement Learning
Children have been shown to overgeneralize lin-
guistic rules, over time learning exceptions and re-
fining their assumptions (Marcus et al., 1992; Yang,
2016). For example, the English rule in which past-
tense forms of verbs have the suffix “-ed” is initially
overgeneralized in young children: they will incor-
rectly say “I goed to the park” instead of “I went
to the park”. The ability to unlearn (or learn excep-
tions to) these overgeneralized rules is critical to
child language learning.

Reinforcement learning is an artificial intelli-
gence concept concerning how an agent learns and
acts. As more information is taken in by the agent,
the agent’s assumptions about the world change.
This process of taking in more information over
time and updating assumptions (both to learn rules
and unlearn rules) is common to both reinforce-
ment learning and child language acquisition.

2.4 The Tolerance Principle
The Tolerance Principle, proposed by Yang (2016),
defines a threshold for the productivity of linguistic
rules. If n is the number of words a rule applies to
and e is the number of words which are exceptions
to that rule, the rule is only productive if

e ≤ θn =
n

ln(n)

If e > θn, the rule is not productive and thus is not
learned by a language learner.

Schuler et al. (2016) demonstrated the Toler-
ance Principle’s effectiveness for a variety of rules.
For example, the study found 1022 unique past-
tense verbs in their child-directed speech data
(n = 1022), of which 127 did not end in “-ed”
(e = 127). Here θn = 147.5, thus e ≤ θn and
the Tolerance Principle holds for the rule asserting
past-tense verbs end in “-ed”. Children will assume
that for an unknown verb, adding the suffix “-ed”
will make the verb past-tense.

3 Model

Our model begins with a small set of POS-tagged
seed words. The model learns prototypical frames
by leveraging this seed list. Learned frames are

1PRO = pronoun, D = determiner

then used to do the reverse and learn the POS of
the novel words they target.

3.1 Seed Words
Based on the semantic bootstrapping hypothesis,
we choose a small set of common, salient words to
kick-start our model’s learning.

The Chicago corpus consists of child-directed
speech samples from 64 child-caregiver dyads, ob-
served in the home every 4 months from 14 to 50
months (Rowe & Goldin-Meadow, 2009). Carlson
et al. (2014) lists the 536 words that most of these
children recognized by 50 months and highlight 86
as especially common and salient. We first man-
ually label these 86 words2 with their POS. From
these 86 words, the 3 most frequent words (in the
CHILDES dataset) for each of the 7 POS categories
are given as input to our model. These 21 words
are the only labeled data the model will receive.

For the Chinese CHILDES dataset, we use the
same 7 POS categories but do not restrict seed
words to be from a predefined list of 86 salient
words; We simply find the 3 most frequent words
in the dataset for each tag and use those as the
seeds, consistent with the methodology used by
Haghighi & Klein (2006).

3.2 Iterative Learning
Words are provided 1-by-1 to the model. Consistent
with the principle of distributional frames proposed
by Mintz (2003), the frame surrounding each word
is also provided (i.e. the word immediately preced-
ing and the word immediately following the target
word). As the model learns possible frames and
POS tags for words, it uses these prototypes to dy-
namically learn new ones. For example, assume
“the balloon is” is fed to the model. Here, “balloon”
is the target word and “the is” is the context. Fig-
ure 1 shows an example of observations the model
makes for this input based on the model’s current
knowledge. The learning process works in both
directions: words can be leveraged to learn frames
and frames can be leveraged to learn words.

As the model is fed more data, it will keep track
of all frames for “balloon”, e.g. “the N is” and “big
N on” as it observes them. Since “balloon” is a
noun, these are potential frames for N. Initially the
frames are lexical only (Lexical-Lexical), but as
the model learns more words, frames may become

2The final labeled list contains 32 verbs, 25 nouns, 9
prepositions, 8 adjectives, 5 adverbs, 4 pronouns, and 3 deter-
miners.



Figure 1: Frame Generalization Process

generalized, e.g. “the N V” (Lexical-POS) and
“ADJ N P” (POS-POS). If multiple frames are valid
when inferring a tag, the more specific one is used,
e.g. “the N is” takes precedence over “the N V”.

3.3 Learning Rules

At each step the model is not just making observa-
tions as shown above. It is also keeping track of
how many times a frame or POS tag for a word
has been valid or invalid. This is the reinforcement
learning component of the model. Returning to the
example “the balloon is”, Figure 2 shows how the
scores are updated based on the model’s current
knowledge. If a POS tag for a word or frame has
a positive score, it is considered valid. The tagged
seed words are always considered valid.

Figure 2: Reinforcement Learning

Since scores are constantly being incremented
and decremented, the model is able to learn and
unlearn frames or words. However this simple
threshold does not apply when generalizing POS-
POS frames.

3.4 Generalizing POS-POS Frames
POS-POS frame generalization only occurs if the
Tolerance Principle holds for both the left and right
sides of a frame. As an example, consider the
potential POS-POS frame “D N V”.

For the left side of the frame, we find all valid (i.e.
positive scores from the reinforcement learning
step) Lexical-POS frames where a word the model
thinks is a determiner is on the left and V is on
the right. The model finds 5 such frames: “the N
V”, “this N V”, “an N V”, “a N V”, and “that ADV
V”. Using the equation for the Tolerance Principle
(Yang, 2016), we have n = 5, θn = 3.1, and e = 1.
e ≤ θn, thus the left side holds.

We do the same for the right side. Find all valid
Lexical-POS frames where a word the model thinks
is a verb is on the right and D is on the left. The
model finds 4 such frames: “D N is”, “D P run”, “D
ADV see”, and “D ADV play”. n = 4, θn = 2.9,
and e = 3. e > θn, thus the right side does not
hold. Since the Tolerance Principle holds for only
one side of “D N V”, the frame is not learned.

3.5 POS Ambiguity
Occasionally, the model will learn incorrect frames,
such as “ADV D N”. The source of these errors
is the POS ambiguity of some words. The seed
word “down” is likely the source of this specific
error since, despite not always being an adverb,
it is labeled as an adverb in the seed list. In the
phrase “it’s just down the road”, “down” is not an
adverb but rather a preposition. This reveals two
limitations of the model:

1. Seed words should be unambiguous.

2. The model can learn at most 1 tag for a word.

The second point is indeed a limitation, but it does
not mean the model will only ever tag an ambigu-
ous word with a single tag. If the model fails to
learn the tag for an ambiguous word, it will tag
each instance of the word based on the frame sur-
rounding the word. If the frame is different for
different tags of the word (as we would expect), it
can be tagged differently depending on the context.

We experimented with different methods of al-
lowing ambiguity while developing this model.
One approach allowed the model to tag a word
with a less likely tag when the target word for the
relevant frame doesn’t match the tag the model al-
ready believes the word has. This did not improve
accuracy, so we tried extending it by allowing the



model to look back 1 word: to use the tag it just pre-
dicted for the left context word (the previous target
word) when predicting the current target word.

We also tried multiple adjustments to the thresh-
olds for when ambiguity would be allowed, but
ultimately while none of the methods we tried de-
creased accuracy by more than 5%, they also didn’t
improve the accuracy or F-score of our model. At
least in the case of the CHILDES data, we believe
this is because the data itself has relatively low
ambiguity and adding this feature unnecessarily
increased the complexity of the model.

4 Evaluation Methods

For all experiments, we hold out 10% of the data
for testing and compare to a baseline model that
tags only seed words.

4.1 Data

We primarily evaluate our model on child-directed
portions of four corpora from the CHILDES
database for 7 POS tags3, totaling just under 2
million words (Brown, 1973; Gelman et al., 1998,
Brent & Siskind, 2001; Gelman et al., 2004; Gel-
man et al., 2014; Newman et al., 2016). Since our
model is based on principles of child language ac-
quisition, evaluation on child-directed speech will
demonstrate its cognitive plausibility. To demon-
strate the our model’s efficacy for langauges other
than English, we also evaluate on child-directed
portions of ten corpora from the Mandarin Chinese
section of the CHILDES database, for the same
7 POS tags as English, totaling just under 1 mil-
lion words (Zhou, 2001; Chang, 2003; Li & Zhou,
2004; Luo et al., 2012; Li & Zhou, 2015; Cheung
& Chang, 2017a; Cheung & Chang, 2017b; Deng
& Yip, 2018; Zhou, 2018; Li, 2019).

We also evaluate our model on the Wall Street
Journal (WSJ) portion of the Penn Treebank (Mar-
cus et al., 1993) for all 45 POS tags in order to com-
pare our model to the prototype-driven model by
Haghighi & Klein (2006). The more complicated
tagset used for this dataset allows us to demonstrate
our model’s extensibility. When evaluating on this
dataset, we use the same seed list as Haghighi
& Klein (2006), which contains 112 words. We
present the accuracies on both English and Chinese
data.

3POS tags: ADJ=adjective, ADV=adverb, D=determiner,
N=noun, P=preposition, PRO=pronoun, V=verb

4.2 Metrics
We use 1-to-1 token accuracy for most tests in order
to evaluate the quality of the tags: count the number
of times the model tagged a word correctly and
divide that by the total number of words tagged.

For the remaining tests, we evaluate the validity
of our model by calculating pairwise metrics that
define precision and recall for a clustering task
(Christodoulopoulos et al., 2010). Typically for
some categoryX , precision is the number of tokens
correctly tagged as X divided by the number of
tokens tagged as X and recall is the number of
tokens correctly tagged asX divided by the number
of tokens that actually have tag X .

However when there are more than 2 categories,
as is the case here, we can define pairwise precision
and recall in which each unique pair of words is an
instance. If the two words should be in the same
category, then the pair’s tags are correct if they
are given the same tag by the model. If the two
words should not be in the same category, then the
pair’s tags are correct if they are given two different
tags by the model. Since these pairs are generated
from all unique words instead of from all tokens, a
word’s tag for pairwise metrics is its most frequent
tag.

5 Results

A comparison of our model to the baseline and
models by Chemla et al. (2009) and Freudenthal
et al. (2013) on CHILDES datasets is shown in
Figure 3. Evaluation on the WSJ dataset and com-
parison to models by Haghighi & Klein (2006) is
shown in Figure 4.

Figure 3: CHILDES Model Accuracies

Accuracy English Chinese

Baseline 14.7% 24.7%
Our Model 74.8% 52.1%

Chemla 53% -
Freudenthal 55% -

On the CHILDES dataset, our model far outper-
forms similar models which leverage distributional
frames by Chemla et al. (2009) and Freudenthal
et al. (2013). The Chinese CHILDES dataset is half
the size of its English counterpart, but our model
still more than doubles the accuracy of the baseline.

Our model far outperforms the baseline on the
WSJ dataset and performs similarly to the PROTO



Figure 4: WSJ Model Accuracies

Accuracy English Chinese

Baseline 42.3% 29.4%
Our Model 64.3% 56.4%

H&K BASE 41.3% 39.0%
H&K PROTO 68.8% 57.4%

model by Haghighi & Klein (2006) on both the
English and Chinese WSJ datasets. In fact, our
model achieves much higher accuracies than the
simpler BASE model by Haghighi & Klein (2006)
for both English and Chinese which, unlike the
PROTO model, uses morphological features only
and does not perform complex statistical optimiza-
tions to cluster words when building prototypical
frames. While our goal was not necessarily high
accuracy, the large gains over the baseline POS
tagger and similar performance to the more com-
plicated prototype-driven model by Haghighi &
Klein (2006) demonstrates the effectiveness of our
approach.

Figure 5: Frame Generalization
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The number of frames the model learns over time
for CHILDES is shown in Figure 5. The model is
indeed learning more frames as it takes in more
data. Interestingly, the POS-POS frames are not
strictly increasing. Our model is learning and un-
learning these frames just like a child would over-
generalize and eventually unlearn the rule or learn
exceptions.

Examples of frames that were unlearned include
“ADJ V D” and “V D ADJ”. It is easy to speculate
why these frames would be unlearned: the two
context words do not always predict the same target
word. “ADJ D” could indeed target V, such as in
“cats that are white are the best”, but a target of P
may be more likely, such as in “are you ready for a
snack”. “V ADJ” could target D, as in the case of
“hit the red button”, but it targets ADJ in “I like tiny
pink bows” and P in “you asked for plain pasta”.
These frames weren’t necessarily incorrect, but
they weren’t good enough to accurately predict the
POS of the target word according to the tolerance
principle, so they were unlearned by the model.

The full list of frames when the model has run
to completion is shown in Figure 6. All frames
the model learns are valid with the exception of
“ADV D N”. As demonstrated in the example for
this frame, the ambiguity of the seed word “down”
is likely the source of error here.

Figure 6: POS-POS Frames

Frame Example

ADV V PRO you can calmly tell her
P D N swimming in the pool

* ADV D N it’s just down the road
PRO V D can you taste that
PRO V P he cried in his room
ADV V ADV we do not talk fast

N V P dinner is on the table
ADV V D quietly get a book

P D ADJ look in this blue bag
D N P is the dog on the couch

ADV V P quickly eating at lunch
ADJ N P a red bird on a branch

Finally, we calculate pairwise metrics for both
the English CHILDES dataset as well as the 536-
word corpus the English CHILDES seed words are
from (Carlson et al., 2014). Evaluation on both is
shown in Figure 7.

Comparing the baseline to our model, precision
does decrease, but this is expected since a model



Figure 7: Pairwise Metric Evaluation

(a) 10% Held-Out CHILDES

P-Precision P-Recall F-Score

Baseline 1.000 2.73 · 10−6 5.46 · 10−6

Our Model 0.646 0.522 0.577
Cartwright 0.853 0.178 0.295

Mintz 0.91 0.13 0.228

(b) Carlson Potential Seed List

P-Precision P-Recall F-Score

Baseline 1.000 5.30 · 10−4 1.06 · 10−3

Our Model 0.680 0.803 0.737

is almost guaranteed to be right when tagging seed
words. Both recall and F-score however see dra-
matic improvements. We’ve also included met-
rics from models by Cartwright & Brent (1997)
and Mintz (2003), two frame-based minimally-
supervised models of childhood syntactic cate-
gory learning, to show that our model outperforms
(based on F-score) existing models in this area.

Success on the CHILDES data demonstrates our
model’s ability to learn the words in child-directed
speech and success on the Chicago corpus from
Carlson et al. (2014) demonstrates our model’s abil-
ity to learn words children would normally learn.

6 Conclusions

We present a model that can be used both for child
language acquisition and minimally-supervised
POS tagging. Unlike existing POS taggers, our
model is cognitively motivated and surprisingly
simple for the high accuracy it achieves.

Not only are the POS-POS frames generated by
our model consistent with theories of child lan-
guage learning, but our model also greatly outper-
forms the baseline and performs similarly to the
cognitively implausible Haghighi & Klein (2006)
PROTO model. It actually far outperforms the
more similar Haghighi & Klein (2006) BASE
model that does not rely on solving a complex sta-
tistical optimization problem.

We believe future work should investigate the
effectiveness of this approach in other languages,
especially those which have less morphology than
English since the models that rely on morphologi-
cal features (e.g. Haghighi & Klein, 2006) would
be at a disadvantage on this data. On the other

hand, since our model operates exclusively at the
word-level, inclusion of morphological features
may improve the performance of our own model
for English. It may also be beneficial to track finer-
grained learning data for the model, such as learn-
ing speed over time.

The success of our model provides support for
the principles of child language acquisition which
it is built upon: semantic bootstrapping, distribu-
tional frames, reinforcement learning, and the Tol-
erance Principle.

Additionally, this work has relevancy to POS
tagging in that it provides a promising new way to
approach minimally-supervised POS tagging. The
accurate labeled data necessary to train supervised
POS taggers is both expensive to create and likely
unavailable for most languages. Since our model
requires less than 2% of the data as the current state-
of-the-art POS tagger (Akbik et al., 2019) requires,
and the vast majority of this data does not need to
be labeled, future work that builds upon our model
may finally make POS tagging for such languages
possible.
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